Pre-class Warm-up!!!
Can you remember what Newton's law of cooling says? Does it say:
a. $\frac{d T}{d t}=k(t-A)$
b. $\frac{d T}{d t}=k(T-A t)$
c. $\frac{d T}{d t}=k(T-A)$
d. $\frac{d T}{d t}=-k(T-A)$
e. None of the above

Section 1.5: Linear first order differential equations

We learn:

- what does a linear equation look like?
- How to solve them
- How to do questions about tanks of brine.

We don't need:

- The theoretical statement of Theorem 1 on page 50 about the existence and uniqueness of solutions

A linear differential equation is a linear combination of derivatives of y by functions of x, like

$$
P_{n}(x) y^{(n)}+P_{n-1}(x) y^{(n-1)}+\cdots P_{(}(x) y^{\prime}+P_{6}(x) y=Q(x)
$$

A first order linear die. has the form:

$$
P_{1}(x) y^{\prime}+P_{0}(x) y=Q(x)
$$ and we can write it:

$$
y^{\prime}+P(x) y=Q(x)
$$

$$
\left(Q=\frac{O \mid d \theta}{P_{1}}\right)
$$

Question: which of the following are linear d.e.'s?
a. $y^{\prime}=x-y$

Yes No
b. $y y^{\prime}+e^{\wedge} x=x \wedge\{15\}$

Yes
No
c. $y^{\prime}+y^{\wedge} \wedge x=x^{\wedge}\{15\}$ (Yes No

How to solve $d y / d x+P(x) y=Q(x)$?
We multiply both sides by $e^{\int P(x) d x}$ to get

$$
\frac{d}{d x}\left(e^{\rho P} y\right)=e^{\int P} y^{\prime}+e^{\int P} P y=e^{\int P} Q
$$

Integrate both sides with respect to x $e^{\text {pr }}$ is the integrating factor Question: Solve $\mathrm{dy} / \mathrm{dx}=\mathrm{x}-\mathrm{y}$
Solution

$$
\begin{aligned}
& y^{\prime}+y=x \quad \text { so } P=1, \int P=x, \\
& I \cdot F_{1}=e^{x} \\
& e^{x} y^{\prime}+e^{x} y=x e^{x} \\
& \frac{d}{d x}\left(e^{x} y\right)=x e^{x} \\
& e^{x} y=\int x e^{x} d x
\end{aligned}
$$

$$
=x e^{x}-\int e^{x} d x=x e^{x}-e^{x}+C
$$

Divide by e^{x} :

$$
y=x-1+C e^{-x}
$$

$$
y=x-1+C e^{\wedge\{-x\}}
$$

Page 56 question 24.
Solve $\left(x^{\wedge} 2+4\right) y^{\prime}+3 x y=x, y(0)=1$.
Solution: $\quad y^{\prime}+\frac{3 x}{x^{2}+4} y=\frac{x}{x^{2}+4}$
The Integrating Factor is: $e^{\int \frac{3 x}{x^{2}+4} d x}$

$$
\begin{aligned}
& =e^{\frac{3}{2} \ln \left(x^{2}+4\right)}=e^{\ln \left(x^{2}+4\right)^{3 / 2}} \\
& =\left(x^{2}+4\right)^{3 / 2}
\end{aligned}
$$

Multiply, to get

$$
\begin{aligned}
\left(x^{2}+4\right)^{3 / 2} y^{\prime}+3 x\left(x^{2}+4\right)^{\frac{1}{2}} y & =x\left(x^{2}+4\right)^{\frac{1}{2}} \\
\frac{d}{d x}\left[\left(x^{2}+4\right)^{3 / 2} y^{\prime}\right] & =x\left(x^{2}+4\right)^{1 / 2}
\end{aligned}
$$

$$
\begin{gathered}
\left(x^{2}+4\right)^{3 / 2} y=\frac{1}{3}\left(x^{2}+4\right)^{3 / 2}+C \\
y=\frac{1}{3}+\frac{C}{\left(x^{2}+4\right)^{3 / 2}} \\
1=\frac{1}{3}+\frac{C}{8}=y(0) \\
C=\frac{16}{3}
\end{gathered}
$$

We get $y=\frac{1}{3}+\frac{16}{3\left(x^{2}+4\right)^{3 / 2}}$

Question: Which method would you use to solve the differential equation

$$
\frac{d y}{d x}=y e^{x}
$$

a. Separate the variables
b. Treat it as a linear first order equation
c. Do something else

Page 54 question 36.
A tank contains 60 gallons of pure water. Brine with concentration 1 lb salt per gallon enters at $2 \mathrm{gal} / \mathrm{min}$. Perfectly mixed solution leaves at $3 \mathrm{gal} / \mathrm{min}$. Thus the tank is empty after 1 hour.
(a) Find the amount of salt in the tank after t minutes,
(b) What is the maximum amount of salt ever in the tank?

Sohotar:

Let $x(t)$ be the amount of salt in the tank at time t.
The volume of liquid in the tank at trine t is $60-t$

The concentration of salt at trine t is $\frac{x(t)}{60-t} \quad$ ib $/ g a l$

$$
\begin{aligned}
& \text { We get } \frac{d x}{d t}=2-\frac{3 x}{60-t} \\
& \frac{d x}{d t}+\frac{3 x}{60-t}=2 \\
& \text { IF. }=e^{\int \frac{3}{60-t} d t}=e^{-3 \ln (60-t)} \\
& =e^{\ln (60-t)^{-3}}=\frac{1}{(60-t)^{3}} \\
& \frac{1}{(60-t)^{3} \frac{d x}{d t}+\frac{3 x}{(60-t)^{4}}=\frac{2}{(60-t)^{3}}} \\
& \frac{d}{d t} \frac{x}{(60-t)^{3}}=\frac{2}{(60-t)^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d t} \frac{x}{(60-t)^{3}}=\frac{2}{(60-t)^{3}} \\
& \frac{x}{(60-t)^{3}}=\frac{1}{(60-t)^{2}}+C \\
& x=60-t+C(60-t)^{3} \\
& x(0)=0=60+C 60^{3} \\
& C=-\frac{1}{60^{2}} \\
& x=60-t-\frac{(60-t)^{3}}{60^{2}}
\end{aligned}
$$

To find the maximum solve

$$
\frac{d x}{d t}=0
$$

